

BIOSOLIS

« Développement de photobioréacteurs solaires intensifiés en vue de la production à grande échelle de bioénergies par microorganismes photosynthétiques »

Culture microalgale : Problématique générale

Croissance photosynthétique

Éclairage de la culture

Besoin de lumière en plus des substrats classiques pour leur croissance

Développement de procédés particuliers : photobioréacteurs

Lumière <u>atténuée</u> au passage de la culture →distribution <u>hétérogène</u> dans le procédé

Ne peut être apparentée à un substrat classique

Limitations possibles de la productivité

- Lumière
- Carbone dissous

Énergie reçue par la culture

• *Nutriments (N,S,P, Mg, Mn, Fe, etc)*

Profondeur de la culture

- *Physico-chimie du milieu (T, pH)*
- Contamination-dérive biologique

Pour garantir les meilleures performances, le système de culture devra chercher à éviter les limitations (mais une existera forcément!)

Et apporter un mélange suffisant (transferts, homogénéisation, accès à la lumière)

La production de microalgues

Les systèmes clos sont la seule technologie qui permettra d'atteindre l'optimum de conversion soleil → biomasse végétale

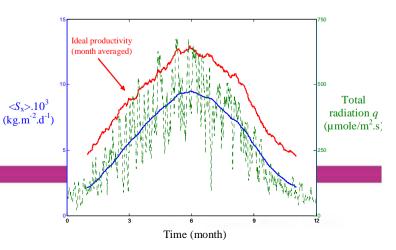
Permet de s'affranchir des limitations par les nutriments (minéraux, carbone dissous) et les conditions de croissance (pH, T, contamination) → régime de photolimitation (seul régime garantissant le maximum de performances en biomasse)

Mais gap technologique : nécessité d'un saut net en terme de performances

<u>Objectifs de BIOSOLIS</u>: Développer des photobioréacteurs solaires intensifiés, maximisant la captation solaire, et permettant un maintien des optimums de croissance en fonctionnement (gestion de la variabilité de la ressource solaire, de la thermique...)

Le programme BIOSOLIS

Deux stratégies de conception de photobioréacteurs répondant aux deux principes d'exploitation de la ressource solaire :

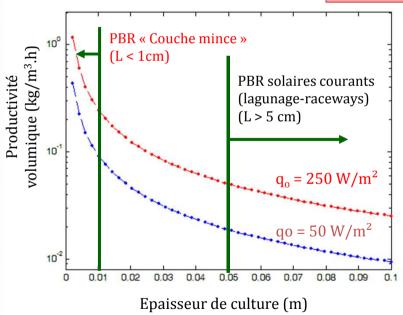

 Système fermé à éclairage direct à très haute productivité en volume = <u>concept en couche mince</u> (<u>AlgoFilm</u>)

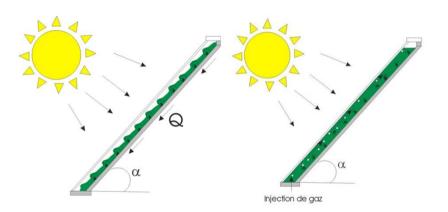
Une conception à plus long terme, à haute productivité en surface et en volume qui concilie au mieux les contraintes par <u>captation et dilution contrôlée du</u> <u>rayonnement en volume</u> à l'optimum thermodynamique au sein du réacteur

(principe DiCoFluV)

Axe transversal : optimisation du fonctionnement en conditions solaires

- <u>Gestion de la température</u> : recherche d'une autonomie énergétique
- •<u>Développement de modèles dédiés</u> (biomasse et thermique) : optimisation de la captation, outils de dimensionnement, outils de contrôle avancé




Recherche d'une Haute Productivité Volumique = Fonctionnement sous haute concentration

Objectif minimum fixé en début de programme : $\mathbf{r}_{x\,\text{min}}$ = 2kg/m^3 .j (\mathbf{C}_{x} = 10g/l, ou 10^7cell/ml) soit un facteur 10 (système fermé) à 100 (système ouvert) sur l'état de l'art

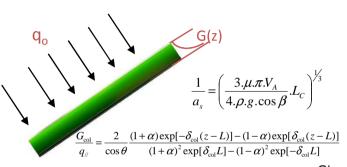
Nécessité d'une surface spécifique éclairée a_s très élevée avec maximisation de la captation solaire

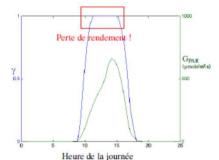
Principes de culture étudiés

Verrous majeurs:

- -Hydrodynamique: L/D cycles, biofilms
- -Maîtrise du transfert de rayonnement
- -Gestion de la température

Etude spécifique (CFD, matériau)

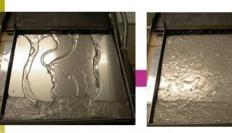

Modèle radiatif+couplage cycles solaires


Stratégie de régulation passive (IR+Source)

- PBR à captation directe et à faible épaisseur
- Régulation thermique passive

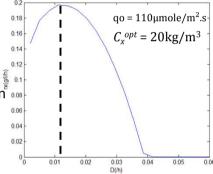
Surface spécifique : $470 \text{ m}^2/\text{m}_{\text{liq}}^3$

Recherche des optima de conception par simulation



Simulation solaire et recherche d'optimum ...

Conception et optimisation en maquette froide



Productivité visée (solaire - équateur)

$$\langle r_X \rangle_{\text{max}} \cong 2 - 10 \text{ kg.m}_{\text{liq}}^{-3}.j^{-1}$$

$$\langle s_x \rangle_{\text{max}} \cong 16 - 28.10^{-3} \text{ kg.m}^{-2}.\text{j}^{-1}$$

$$\langle s_X \rangle_{\text{max}} \cong 60 - 100 \text{ t.ha}^{-1}.\text{an}^{-1}$$

Caractérisation hydrodynamique (épaisseur de film, kla, DTS)

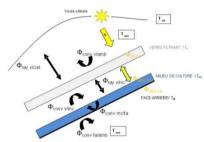
as plan (m²/m3)	Mesure	Modèle hydrodynamique
Essai 1	694	746
Essai 2	1010	1010
Essai 3	654	680

Recherche de matériaux (biofilms, mouillabilité)

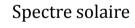
Essai 1 : $\alpha = 0.62^{\circ}$; Q = 1543 mL/min

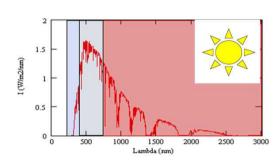
Essai 2 : $\alpha = 1,70^{\circ}$; Q = 1673 mL/min

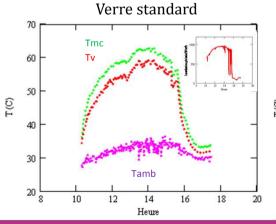
Essai 3 : $\alpha = 0.64^{\circ}$; Q = 2076 mL/min

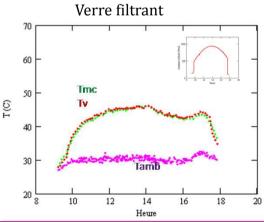

• PBR à captation directe et à faible épaisseur

Surface spécifique : $470 \text{ m}^2/\text{m}_{\text{liq}}^3$


• Régulation thermique passive


Mise en place de procédés passifs de régulation thermique





- ☐ Limiter le flux solaire entrant dans le photobioréacteur.
- ☐ Augmenter les pertes thermiques entre le réacteur et le milieu ambiant.
- ☐ Assurer le stockage de la chaleur durant les heures les plus ensoleillées.

- PBR à captation directe et à faible épaisseur
- Régulation thermique passive

Surface spécifique : $470 \text{ m}^2/\text{m}_{\text{liq}}^3$

Caractérisation sous simulateur solaire

20,000

10,000

5,000

Caractérisation finale en culture

Productivités obtenues

Mesures faites à qo = 110μ mole/m².s (hiver, Saint-Nazaire)

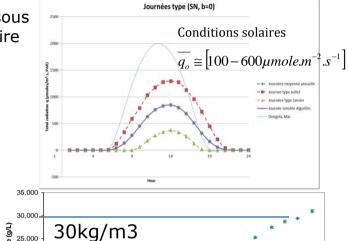
$$< r_X >_{\text{max}} \cong 3 \text{kg.m}_{\text{liq}}^{-3}.\text{j}^{-1} \cong 1,1 \text{t.m}_{\text{liq}}^{-3}.\text{an}^{-1}$$

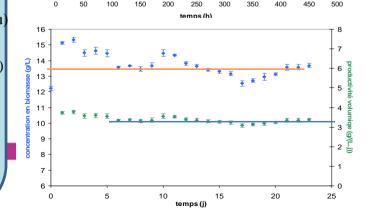
$$C_{X_{\text{max}}} \cong 30 \text{kg.m}^{-3} \text{ (batch)}$$

$$\langle s_X \rangle_{\text{max}} \cong 6,6.10^{-3} \text{ kg.m}^{-2}.\text{j}^{-1} \cong 25 \text{ t.ha}^{-1}.\text{an}^{-1} \quad C_{X_{opt}} \cong 14 \text{kg.m}^{-3} \text{ (continu)}$$

Estimation à qo = 500μmole/m².s (Juillet, Saint-Nazaire)

$$\langle r_X \rangle_{\text{max}} \cong 8,6 \text{kg.m}_{\text{liq}}^{-3}.\text{j}^{-1} \cong 3 \text{t.m}_{\text{liq}}^{-3}.\text{an}^{-1}$$
 $C_{X_{opt}} \cong 30 \text{kg.m}^{-3}(\text{continu})$

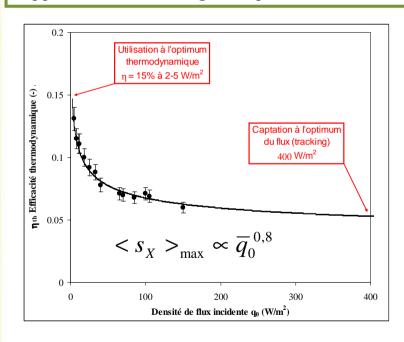

$$\langle s_X \rangle_{\text{max}} \cong 20.10^{-3} \text{ kg.m}^{-2}.\text{j}^{-1} \cong 67 \text{ t.ha}^{-1}.\text{an}^{-1}$$

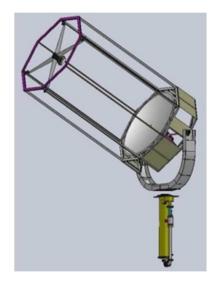

Comparaison aux technologies de référence

(comparaison pour 500μmoles/m².s soit l'été à SN)

Hiver : Gain r_x environ 10 x PBR classique, 30 x raceway Été : Gain r_x environ 30 x PBR classique, 90 x raceway

Gain S_x 1 x PBR classique, 3 x raceway





Gain supplémentaire sur la productivité surfacique et fonctionnement en haute concentration

Nécessité d'une surface spécifique éclairée a très élevée avec contrôle poussé du champ de radiation interne

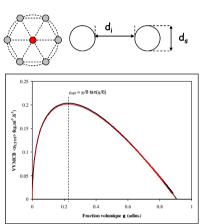
Objectif minimum fixé en début de programme : montrer le gain sur la productivité en surface par rapport à une technologie à captation directe

Conception en deux parties: captation cuve de réaction (qui peut alors être conçue comme un bioréacteur classique)

Verrous majeurs:

- Complexité Technologique

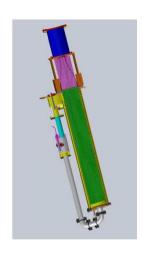
Systèmes optiques dédiés (FODL, concentration, filtration)

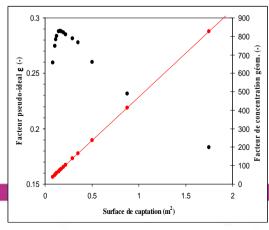

- Maîtrise du transfert de rayonnement _____ Modèle radiatif + couplage cycles solaires


PBR à dilution de lumière

Surface spécifique : $400 \text{ m}^2/\text{m}_{\text{liq}}^3$

• Filtration en amont des IR et régulation thermique très faible


Recherche des optima de conception par simulation et approche constructale



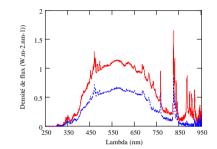
Réseau de 976 FODL $d_i = 2.3 - 2.4 \text{ mm (avec gaines)}$ $d_S = d_i (\varepsilon = 0.2267)$

Optimisation théorique de la surface de captation à l'aide de bases solaires

Exemple pour Clermont-Ferrand

- La surface optimale dépend très peu du lieu d'implantation
- Le facteur de concentration optimal théorique est d'environ 100 (sur toron). Le facteur de dilution optimal est d'environ 50
- La productivité en surface augmente beaucoup en fonction du lieu d'implantation (évolution plus faible en captation directe)

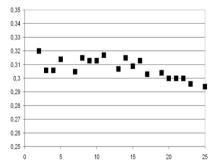

PBR à dilution de lumière

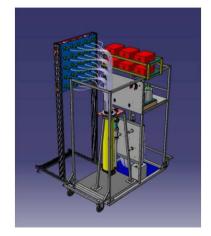

Surface spécifique : $400 \text{ m}^2/\text{m}_{\text{liq}}^3$

• Filtration en amont des IR et régulation thermique très faible

Conception d'un système optique échelle 1 et validation sur le site d'Odeillo

Module élémentaire





Panneau dimensionné à l'échelle 1 pour le réacteur de 20 L utiles

Essai sur Tracker (PROMES – Perpignan) Transmission globale moyenne 31% Densité de flux incident (940 W/m²)

Assemblage final

PBR à dilution de lumière

Surface spécifique : $400 \text{ m}^2/\text{m}_{\text{liq}}^3$

• Filtration en amont des IR et régulation thermique très faible

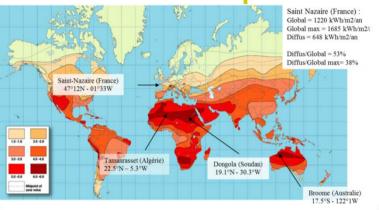
Réacteur DiCoFluV final avec son système d'acquisition – commande *Tests en lumière artificielle* Espèce cultivée pour les futurs tests :

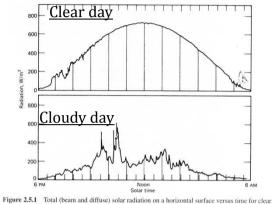
Arthrospira platensis PCC 8005

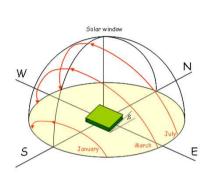
Cible $C_v = 15 \text{ kg/m}^3 \text{ à 5W/m}^2$

Soit pour un flux moyen annuel à l'équateur (800µmole/m².s) :

$$\langle r_X \rangle_{\text{max}} \cong 0.5 \text{ kg.m}_{\text{TOT}}^{-3}.\text{j}^{-1} \cong 0.6 \text{ kg.m}_{\text{liq}}^{-3}.\text{j}^{-1}$$

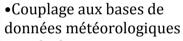

$$\langle s_x \rangle_{\text{max}} \cong 85.10^{-3} \text{ kg.m}^{-2}.\text{j}^{-1} \cong 310 \text{ t.ha}^{-1}.\text{an}^{-1}$$


En réalité, avec les pertes actuelles sur la chaîne de captation/concentration/filtration:


$$\langle s_x \rangle \cong 100 \text{ t.ha}^{-1}.\text{an}^{-1} \text{ (environ 2 - 3x AlgoFilm)}$$

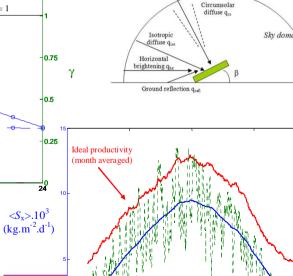
Comparaison aux technologies de référence (conditions idéales de l'équateur) Gain r_x environ 3 x PBR classique, 10 x raceway Gain S_x environ 3 x PBR classique, 8 x raceway

Modèles de photobioréacteurs solaires

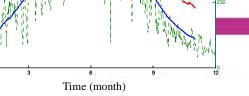


Total

radiation q


 $(\mu mole/m^2.s)$

and largely cloudy day, latitude 43°, for days near equinox.


- •Etude du comportement dynamique de PBR solaire
- •Modèles de
- •Influence des conditions d'ensoleilleman. optimisation de la captation

Direct radiation q

Areal productivity (10 ³ .kg.m ⁻² -d ⁻¹)	Maximal productivity	Optimal productivity	PBR efficiency	Light interception yield
Summer day, $\beta = 0^{\circ}$	10	15	66%	78%
Winter day, $\beta = 0^{\circ}$	2.8	6.3	44%	53%
Winter day, $\beta = 45^{\circ}$	4.7	6.3	74%	89%

Valorisation

Publications (2)

- Cornet JF. Calculation of optimal design and ideal productivities of volumetrically-lightened photobioreactors using the constructal approach. Chemical Engineering Science 2010;65:985-998.
- Modeling dynamic functioning of rectangular photobioreactors in solar conditions, J. Pruvost, J.F.Cornet, V.Goetz, J. Legrand, AIChE Journal (sous presse).

+ 2 en préparation (thermique, modèle)

Ouvrages ou chapitres d'ouvrage (2)

- Cultivation of algae in photobioreactors for biodiesel production, J.Pruvost. Titre de l'ouvrage "BIOFUELS: ALTERNATIVE FEEDSTOCKS AND CONVERSION PROCESSES" par Elsevier Inc. USA, édité par A Pandey (India), C Larroche (France), SC Ricke (USA) and CG Dussap (France).
- "Production industrielle de microalgues photosynthétiques", Pruvost J., LeBorgne F., Cornet J.F., Jenck J., Techniques de l'Ingénieur (rédaction prévue pour Janvier 2011).

Protection industrielle (3)

- J.PRUVOST, F.LE BORGNE, J.LEGRAND, Photobioréacteur couche mince à haute productivité volumique. Brevet français n° 0956870 déposé le 1/10/2009 en cours d'extension internationale. Procédure d'extension internationale PCT en cours (EP2010/064659).
- V.GOETZ, J.PRUVOST, J.LEGRAND, G.PLANTARD, Dispositif de contrôle de température d'un photobioréacteur solaire à éclairage direct, Brevet français FR1057285 déposé le 13/09/2010.
- Photobioréacteur solaire à dilution contrôlée du flux en volume, Brevet français n° 1059761 déposé le 25/11/2010

Valorisation

Congrès (4)

- "MODELLING PHOTOBIOREACTORS FOR MASS SCALE SOLAR PRODUCTION OF MICROALGAE", J. Pruvost, F.Le Borgne, J. Legrand, 8th World Congress of Chemical Engineering (Aout 2009, Montreal)
- "Development of high efficiency solar photobioreactor for biofuel mass-scale production issued from photosynthetic microorganisms" F.Le Borgne, J. Pruvost, J. Legrand, "International Green Process Engineering Congress", Venise, 14-17 Juin 2009.
- "Etude et optimisation de photobioréacteurs à éclairage interne Résultats préliminaires", Marie-Agnès Yang, Jean-François Cornet, Congrès SFGP, Lille, 29Nov-1er Déc. 2011.
- "Modélisation de la productivité et du comportement thermique de photobioréacteurs solaires", Pruvost Jérémy, Goetz Vincent, Jean-François Cornet, Congrès SFGP, Lille, 29Nov-1er Déc. 2011.

Conférences vulgarisation (4)

- Production solaire de biomasse microalgale en photobioréacteurs : enjeux, conception et perspectives, Pruvost, J., Cornet, J.F., Goetz, V., Journées AdeBiotech « Algues du Futur » (17-19 Novembre 2010). Conférence invitée.
- « Les Photobioréacteurs Enjeux, Conception et Perspectives », Pruvost, J., Cornet, J.F., Séminaire du PIE CNRS Biomasse-Bioénergies, Paris, France (16 mars 2010). Conférence invitée.
- MODELLING PHOTOBIOREACTORS FOR MASS SCALE SOLAR PRODUCTION OF MICROALGAE, Présentation orale J.Pruvost au GDR « Biohydrogène » 2009
- « Production de microorganismes photosynthétiques en photobioréacteurs solaires technologie existante et verrous commune » Présentation orale F.Le Borgne au GDR « Biohydrogène » 2008.

Conclusions

- Développement de deux technologies en rupture par rapport à l'état de l'art, permis grâce à un travail collaboratif (complémentarité évidente des équipes)
- Consolidation d'une base théorique pour l'ingénierie et l'optimisation des photobioréacteurs solaires

Perspectives

- Poursuite de la collaboration au sein du consortium et collaborations industrielles d'ores et déjà engagées
 - → Poursuite du développement pour une utilisation à des fins de production d'énergies à grande échelle (caractérisation complémentaire, étude technico-économique, extrapolation des concepts, validation-optimisation en conditions réelles sur souches à potentiel)
 - → Optimisation des systèmes et conception de géométrie alternative
 - → Utilisation des outils théoriques pour la recherche des optimums de fonctionnement en fonction des conditions d'exploitation

